Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.483
Filtrar
1.
Environ Monit Assess ; 196(4): 408, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561517

RESUMO

Cyanobacteria inhabiting lotic environments have been poorly studied and characterized in Mexico, despite their potential risks from cyanotoxin production. This article aims to fill this knowledge gap by assessing the importance of benthic cyanobacteria as potential cyanotoxin producers in central Mexican rivers through: (i) the taxonomic identification of cyanobacteria found in these rivers, (ii) the environmental characterization of their habitats, and (iii) testing for the presence of toxin producing genes in the encountered taxa. Additionally, we introduce and discuss the use of the term "CyanoHAMs" for lotic water environments. Populations of cyanobacteria were collected from ten mountain rivers and identified using molecular techniques. Subsequently, these taxa were evaluated for genes producing anatoxins and microcystins via PCR. Through RDA analyses, the collected cyanobacteria were grouped into one of three categories based on their environmental preferences for the following: (1) waters with high ionic concentrations, (2) cold-temperate waters, or (3) waters with high nutrient enrichment. Populations from six locations were identified to genus level: Ancylothrix sp., Cyanoplacoma sp., and Oxynema sp. The latter was found to contain the gene that produces anatoxins and microcystins in siliceous rivers, while Oxynema tested positive for the gene that produces microcystins in calcareous rivers. Our results suggest that eutrophic environments are not necessarily required for toxin-producing cyanobacteria. Our records of Compactonostoc, Oxynema, and Ancylothrix represent the first for Mexico. Four taxa were identified to species level: Wilmottia aff. murrayi, Nostoc tlalocii, Nostoc montejanii, and Dichothrix aff. willei, with only the first testing positive using PCR for anatoxin and microcystin-producing genes in siliceous rivers. Due to the differences between benthic growths with respect to planktonic ones, we propose the adoption of the term Cyanobacterial Harmful Algal Mats (CyanoHAMs) as a more precise descriptor for future studies.


Assuntos
Toxinas Bacterianas , Cianobactérias , Tropanos , Microcistinas/análise , Proliferação Nociva de Algas , México , Toxinas Bacterianas/genética , Toxinas Bacterianas/análise , Monitoramento Ambiental , Cianobactérias/genética , Toxinas de Cianobactérias , Rios/microbiologia
2.
Anal Chem ; 96(15): 5887-5896, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567874

RESUMO

Microcystin-LR (MC-LR) is a severe threat to human and animal health; thus, monitoring it in the environment is essential, especially in water quality protections. Herein, in this work, we synthesize PVDF/CNT/Ag molecular imprinted membranes (PCA-MIMs) via an innovative combination of surface-enhanced Raman spectroscopy (SERS) detection, membrane separation, and molecular-imprinted technique toward the analysis of MC-LR in water. In particular, a light-initiated imprint is employed to protect the chemical structure of the MC-LR molecules. Furthermore, in order to ensure the detection sensitivity, the SERS substrates are combined with the membrane via the assistance of magnetism. The effect of synthesis conditions on the SERS sensitivity was investigated in detail. It is demonstrated from the characteristic results that the PCA-MIMs present high sensitivity to the MC-LR molecules with excellent selectivity against the interfere molecules. Results clearly show that the as-prepared PCA-MIMs hold great potential applications to detect trace MC-LR for the protection of water quality.


Assuntos
Biomimética , Polímeros de Fluorcarboneto , Polivinil , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Microcistinas/análise , Toxinas Marinhas
3.
J Hazard Mater ; 470: 134170, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613957

RESUMO

Cyanobacterial blooms, often dominated by Microcystis aeruginosa, are capable of producing estrogenic effects. It is important to identify specific estrogenic compounds produced by cyanobacteria, though this can prove challenging owing to the complexity of exudate mixtures. In this study, we used untargeted metabolomics to compare components of exudates from microcystin-producing and non-microcystin-producing M. aeruginosa strains that differed with respect to their ability to produce microcystins, and across two growth phases. We identified 416 chemicals and found that the two strains produced similar components, mainly organoheterocyclic compounds (20.2%), organic acids and derivatives (17.3%), phenylpropanoids and polyketides (12.7%), benzenoids (12.0%), lipids and lipid-like molecules (11.5%), and organic oxygen compounds (10.1%). We then predicted estrogenic compounds from this group using random forest machine learning. Six compounds (daidzin, biochanin A, phenylethylamine, rhein, o-Cresol, and arbutin) belonging to phenylpropanoids and polyketides (3), benzenoids (2), and organic oxygen compound (1) were tested and exhibited estrogenic potency based upon the E-screen assay. This study confirmed that both Microcystis strains produce exudates that contain compounds with estrogenic properties, a growing concern in cyanobacteria management.


Assuntos
Estrogênios , Aprendizado de Máquina , Metabolômica , Microcistinas , Microcystis , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Microcistinas/metabolismo , Microcistinas/análise , Microcistinas/química , Estrogênios/metabolismo , Estrogênios/química
4.
J Hazard Mater ; 470: 134281, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626680

RESUMO

Eutrophication has led to the widespread occurrence of cyanobacterial blooms. Toxic cyanobacterial blooms with high concentrations of microcystins (MCs) have been identified in the Lalla Takerkoust reservoir in Morocco. The objective of this study was to evaluate the efficiency of the Multi-Soil-Layering (MSL) ecotechnology in removing natural cyanobacterial blooms from the lake. Two MSL pilots were used in rectangular glass tanks (60 × 10 × 70 cm). They consisted of permeable layers (PLs) made of pozzolan and a soil mixture layer (SML) containing local soil, ferrous metal, charcoal and sawdust. The main difference between the two systems was the type of local soil used: sandy soil for MSL1 and clayey soil for MSL2. Both MSL pilots effectively reduced cyanobacterial cell concentrations in the treated water to very low levels (0.09 and 0.001 cells/mL). MSL1 showed a gradual improvement in MC removal from 52 % to 99 %, while MSL2 started higher at 90 % but dropped to 54% before reaching 86%. Both MSL systems significantly reduced organic matter levels (97.2 % for MSL1 and 95.8 % for MSL2). Both MSLs were shown to be effective in removing cyanobacteria, MCs, and organic matter with comparable performance.


Assuntos
Cianobactérias , Eutrofização , Lagos , Microcistinas , Solo , Lagos/microbiologia , Cianobactérias/crescimento & desenvolvimento , Microcistinas/análise , Solo/química , Purificação da Água/métodos , Recuperação e Remediação Ambiental/métodos , Marrocos
5.
Methods Mol Biol ; 2788: 397-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656527

RESUMO

Early monitoring of Microcystis, a cyanobacterium that produces microcystin, is paramount in order to confirm the presence of Microcystis spp. Both phenotypic and genotypic methods have been used. The phenotypic methods provide the presence of the microcystis but do not confirm its species type and toxin produced. Additionally, phenotypic methods cannot differentiate toxigenic from non-toxigenic Microcystis. Therefore, the current protocol also describes genetic methods based on PCR to detect toxigenic Microcystis spp. based on microcystin synthetase E (mcy E) gene and 16-23S RNA genes for species-specific identification, which can effectively comprehend distinct lineages and discrimination of potential complexity of microcystin populations. The presence of these microcystin toxins in blood, in most cases, indicates contamination of drinking water by cyanobacteria. The methods presented herein are used to identify microcystin toxins in drinking water and blood.


Assuntos
Cianobactérias , Lagos , Microcistinas , Lagos/microbiologia , Microcistinas/genética , Microcistinas/análise , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Fenótipo , Genótipo , Reação em Cadeia da Polimerase/métodos , Microbiologia da Água , Microcystis/genética , Microcystis/isolamento & purificação , Microcystis/classificação , Técnicas de Genotipagem/métodos
6.
J Hazard Mater ; 470: 134198, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608582

RESUMO

A novel Ag3PO4/ZnWO4-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.57% of Microcystin-LR (MCLR) were degraded by the AZW@GF-Pt photoelectrocatalytic system under the optimal operating conditions with a rate constant of 0.02617 min-1 and 0.01416 min-1, respectively. The calculated synergistic coefficient of photoelectrocatalytic algal removal and MC-LR degradation by the AZW@GF-Pt system was both larger than 1.9. In addition, the experiments of quenching experiments and electron spin resonance (ESR) revealed that the photoelectrocatalytic reaction mainly generated •OH and •O2- for algal removal and MC-LR degradation. Furthermore, the potential pathway for photoelectrocatalytic degradation of MC-LR was proposed. Finally, the photoelectrocatalytic cycle algae removal experiments were carried out on AZW@GF electrode, which was found to maintain the algae removal efficiency at about 91% after three cycles of use, indicating that the photoelectrocatalysis of AZW@GF electrode is an effective emergency algae removal technology.


Assuntos
Eletrodos , Grafite , Toxinas Marinhas , Microcistinas , Compostos de Prata , Grafite/química , Grafite/efeitos da radiação , Microcistinas/química , Microcistinas/isolamento & purificação , Catálise , Compostos de Prata/química , Fosfatos/química , Óxidos/química , Técnicas Eletroquímicas , Tungstênio/química , Clorofila A/química , Zinco/química , Purificação da Água/métodos , Clorofila/química , Processos Fotoquímicos , Proliferação Nociva de Algas
7.
J Hazard Mater ; 470: 134241, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608594

RESUMO

Artemisinin, a novel plant allelochemical, has attracted attention for its potential selective inhibitory effects on algae, yet to be fully explored. This study compares the sensitivity and action targets of Microcystis aeruginosa (M. aeruginosa) and Chlorella pyrenoidosa (C. pyrenoidosa) to artemisinin algaecide (AMA), highlighting their differences. Results indicate that at high concentrations, AMA displaces the natural PQ at the QB binding site within M. aeruginosa photosynthetic system, impairing the D1 protein repair function. Furthermore, AMA disrupts electron transfer from reduced ferredoxin (Fd) to NADP+ by interfering with the iron-sulfur clusters in the ferredoxin-NADP+ reductases (FNR) domain of Fd. Moreover, significant reactive oxygen species (ROS) accumulation triggers oxidative stress and interrupts the tricarboxylic acid cycle, hindering energy acquisition. Notably, AMA suppresses arginine synthesis in M. aeruginosa, leading to reduced microcystins (MCs) release. Conversely, C. pyrenoidosa counters ROS accumulation via photosynthesis protection, antioxidant defenses, and by regulating intracellular osmotic pressure, accelerating damaged protein degradation, and effectively repairing DNA for cellular detoxification. Additionally, AMA stimulates the expression of DNA replication-related genes, facilitating cell proliferation. Our finding offer a unique approach for selectively eradicating cyanobacteria while preserving beneficial algae, and shed new light on employing eco-friendly algicides with high specificity.


Assuntos
Artemisininas , Chlorella , Microcystis , Fotossíntese , Espécies Reativas de Oxigênio , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Artemisininas/farmacologia , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Microcistinas/metabolismo
8.
Toxins (Basel) ; 16(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38535811

RESUMO

Microcystin-LR (MC-LR) is a secondary metabolite produced by cyanobacteria, globally renowned for its potent hepatotoxicity. However, an increasing body of research suggests that it also exhibits pronounced neurotoxicity. PP2A is a fundamental intracellular phosphatase that plays a pivotal role in cell development and survival. Although extensive research has focused on the binding of MC-LR to the C subunit of PP2A, few studies have explored the key amino acid sites that can prevent the binding of MC-LR to PP2A-C. Due to the advantages of Caenorhabditis elegans (C. elegans), such as ease of genetic editing and a short lifespan, we exposed nematodes to MC-LR in a manner that simulated natural exposure conditions based on MC-LR concentrations in natural water bodies (immersion exposure). Our findings demonstrate that MC-LR exerts comprehensive toxicity on nematodes, including reducing lifespan, impairing reproductive capabilities, and diminishing sensory functions. Notably, and for the first time, we observed that MC-LR neurotoxic effects can persist up to the F3 generation, highlighting the significant threat that MC-LR poses to biological populations in natural environments. Furthermore, we identified two amino acid sites (L252 and C278) in PP2A-C through mutations that prevented MC-LR binding without affecting PP2A activity. This discovery was robustly validated through behavioral studies and neuronal calcium imaging using nematodes. In conclusion, we identified two crucial amino acid sites that could prevent MC-LR from binding to PP2A-C, which holds great significance for the future development of MC-LR detoxification drugs.


Assuntos
Caenorhabditis elegans , Toxinas Marinhas , Microcistinas , Síndromes Neurotóxicas , Animais , Mutação , Aminoácidos , Neurônios
9.
Toxins (Basel) ; 16(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535815

RESUMO

Microcystin-LR (MC-LR) is a cyanobacterial metabolite produced during cyanobacterial blooms and is toxic to aquatic animals, and the liver is the main targeted organ of MC-LR. To comprehensively understand the toxicity mechanism of chronic exposure to environmental levels of MC-LR on the liver of fish, juvenile Nile tilapia were exposed to 0 µg/L (control), 1 µg/L (M1), 3 µg/L (M3), 10 µg/L (M10), and 30 µg/L (M30) MC-LR for 60 days. Then, the liver hepatotoxicity induced by MC-LR exposure was systematically evaluated via histological and biochemical determinations, and the underlying mechanisms were explored through combining analysis of biochemical parameters, multi-omics (transcriptome and metabolome), and gene expression. The results exhibited that chronic MC-LR exposure caused slight liver minor structural damage and lipid accumulation in the M10 group, while resulting in serious histological damage and lipid accumulation in the M30 group, indicating obvious hepatotoxicity, which was confirmed by increased toxicity indexes (i.e., AST, ALT, and AKP). Transcriptomic and metabolomic analysis revealed that chronic MC-LR exposure induced extensive changes in gene expression and metabolites in six typical pathways, including oxidative stress, apoptosis, autophagy, amino acid metabolism, primary bile acid biosynthesis, and lipid metabolism. Taken together, chronic MC-LR exposure induced oxidative stress, apoptosis, and autophagy, inhibited primary bile acid biosynthesis, and caused fatty deposition in the liver of Nile tilapia.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ciclídeos , Toxinas Marinhas , Microcistinas , Animais , Multiômica , Ácidos e Sais Biliares , Lipídeos
10.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460408

RESUMO

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Assuntos
Toxinas Marinhas , Microcistinas , Sirtuínas , Espermatogônias , Animais , Masculino , Camundongos , Apoptose , Proliferação de Células , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Camundongos Endogâmicos ICR , Microcistinas/metabolismo , Microcistinas/toxicidade , Sêmen , Sirtuínas/efeitos dos fármacos , Sirtuínas/metabolismo , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38508355

RESUMO

Microcystins (MCs) are prevalent harmful contaminants within shrimp aquaculture systems, exhibiting a diverse array of variants. Gut microbiota can engage in mutual interactions with the host through the gut-liver axis. In this study, the shrimp Litopenaeus vannamei were subjected to three different variants of MCs (LR, YR, RR) at a concentration of 1 µg/L each, and elucidated the alterations in both intestinal microbiota and hepatopancreas physiological homeostasis. The results showed that all three variants of MCs prompted histological alterations in the hepatopancreas, induced elevated levels of oxidative stress biomarkers (H2O2, T-SOD, and CAT), disturbed the transcription levels of immune-related genes (Crus, ALF, and Lys), along with an increase in apoptotic genes (Casp-3 and P53). Furthermore, the metabolic profiles of the hepatopancreas were perturbed, particularly in amino acid metabolism such as "lysine degradation" and "ß-alanine metabolism"; the mTOR and FoxO signaling were also influenced, encompassing alterations in the transcription levels of related genes. Additionally, the alterations were observed in the intestinal microbiota's diversity and composition, particularly potential beneficial bacteria (Alloprevotella, Bacteroides, Collinsella, Faecalibacterium, and Prevotellaceae UCG-001), which exhibited a positive correlation with the metabolite berberine. These findings reveal that the three MCs variants can impact the health of the shrimp by interfering with the homeostasis of intestinal microbial and hepatopancreas physiology.


Assuntos
Microbioma Gastrointestinal , Penaeidae , Animais , Hepatopâncreas/metabolismo , Microcistinas/toxicidade , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Penaeidae/genética
12.
Sci Total Environ ; 926: 171802, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508265

RESUMO

Selective serotonin reuptake inhibitor (SSRI) antidepressants are of increasing concern worldwide due to their ubiquitous occurrence and detrimental effects on aquatic organisms. However, little is known regarding their effects on the dominant bloom-forming cyanobacterium, Microcystis aeruginosa. Here, we investigated the individual and joint effects of two typical SSRIs fluoxetine (FLX) and sertraline (SER) on M. aeruginosa at physio-biochemical and molecular levels. Results showed that FLX and SER had strong growth inhibitory effects on M. aeruginosa with the 96-h median effect concentrations (EC50s) of 362 and 225 µg/L, respectively. Besides, the mixtures showed an additive effect on microalgal growth. Meanwhile, both individual SSRIs and their mixtures can inhibit photosynthetic pigment synthesis, cause oxidative damage, destroy cell membrane, and promote microcystin-leucine-arginine (MC-LR) synthesis and release. Moreover, the mixtures enhanced the damage to photosynthesis, antioxidant system, and cell membrane and facilitated MC-LR synthesis and release compared to individuals. Furthermore, transcriptomic analysis revealed that the dysregulation of the key genes related to transport, photosystem, protein synthesis, and non-ribosomal peptide structures was the fundamental molecular mechanism underlying the physio-biochemical responses of M. aeruginosa. These findings provide a better understanding of the toxicity mechanisms of SSRIs to microalgae and their risks to aquatic ecosystems.


Assuntos
Microcystis , Sertralina , Humanos , Sertralina/toxicidade , Fluoxetina/toxicidade , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Ecossistema , Antidepressivos , Perfilação da Expressão Gênica , Microcistinas/metabolismo
13.
Environ Pollut ; 348: 123878, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548158

RESUMO

Addressing notorious and worldwide Microcystis blooms, mechanical algae harvesting is an effective emergency technology for bloom mitigation and removal of nutrient loads in waterbodies. However, the absence of effective methods for removal of cyanobacterial toxins, e.g., microcystins (MCs), poses a challenge to recycle the harvested Microcystis biomass. In this study, we therefore introduced a novel approach, the "captured biomass-MlrA enzymatic MC degradation", by enriching microcystinase A (MlrA) via fermentation and spraying it onto salvaged Microcystis slurry to degrade all MCs. After storing the harvested Microcystis slurry, a rapid release of extracellular MCs occurred within the initial 8 h, reaching a peak concentration of 5.33 µg/mL at 48 h during the composting process. Upon spraying the recombinant MlrA crude extract (about 3.36 U) onto the Microcystis slurry in a ratio of 0.1% (v/v), over 95% of total MCs were degraded within a 24-h period. Importantly, we evaluated the reliability and safety of using MlrA extracts to degrade MCs. Results showed that organic matter/nutrient contents, e.g. soluble proteins, polysaccharides, phycocyanin and carotenoids, were not significantly altered. Furthermore, the addition of MlrA extracts did not significantly change the bacterial community composition and diversity in the Microcystis slurry, indicating that the MlrA extracts did not increase the risk of pathogenic bacteria. Our study provides an effective and promising method for the pre-treatment of harvested Microcystis biomass, highlighting an ecologically sustainable framework for addressing Microcystis blooms.


Assuntos
Cianobactérias , Microcystis , Microcistinas/metabolismo , Reprodutibilidade dos Testes , Cianobactérias/metabolismo , Microcystis/metabolismo , Biomassa
14.
Environ Pollut ; 347: 123715, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462191

RESUMO

Microcystin-LR (MC-LR) is a hepatotoxic metabolite that naturally occurs during some cyanobacterial blooms in eutrophic waterbodies, and irrigation of edible plants with MC-LR-contaminated water causes bioaccumulation of the toxin. However, sufficient information about accumulation and depuration mechanics in hydroculture-grown herb plants is still lacking. This work aimed at 1) investigating bioaccumulation and depuration of MC-LR in basil, 2) verifying the possible MC-LR detoxification mechanisms in the plant, and 3) detecting the natural occurrence of MC-LR in basil (n = 50) collected from the Belgian market. Basil plants grown in a hydroculture were exposed to MC-LR (5, 20, and 50 µg L-1) spiked in a Hoagland solution for seven days. MC-LR depuration was also studied by transferring the plants to a non-contaminated Hoagland solution after exposure to MC-LR for another seven days. MC-LR concentrations in Hoagland solution, basil leaves, and roots were quantified using a validated UHPLC-MS/MS method. In addition, ELISA and LC-HRMS (only basil leaves) were used for confirmation. The results showed an increase in the accumulated levels of MC-LR at higher exposure doses, with higher MC-LR levels in roots than in leaves for all the treatment conditions. For MC-LR depuration, significant reductions were observed in all the treatment conditions for roots only. No MC-LR conjugates, potentially related to metabolism, were detected by LC-HRMS. Finally, MC-LR was detected in one store-bought basil sample, representing the first occurrence of cyanotoxins in an edible crop from Belgium.


Assuntos
Toxinas Marinhas , Ocimum basilicum , Ocimum basilicum/metabolismo , Espectrometria de Massas em Tandem , Microcistinas/toxicidade , Toxinas de Cianobactérias
15.
Environ Pollut ; 347: 123744, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462202

RESUMO

The eutrophication of aquaculture water bodies seriously restricts the healthy development of the aquaculture industry. Among them, microcystins are particularly harmful. Therefore, the development of technologies for degrading microcystins is of great significance for maintaining the healthy development of the aquaculture industry. The feasibility and mechanism of removing microcystins-LR by dielectric barrier discharge (DBD) plasma were studied. DBD discharge power of 49.6 W and a treatment time of 40 min were selected as the more suitable DBD parameters, resulting in microcystin-LR removal efficiency of 90.4%. Meanwhile, the effects of initial microcystin-LR concentration, initial pH value, turbidity, anions on the degradation effect of microcystin-LR were investigated. The removal efficiency of microcystin-LR decreased with the increase of initial microcystin-LR concentration and turbidity. The degradation efficiency of microcystin-LR at pH 4.5 and 6.5 is significantly higher than that at pH 8.5 and 3.5. HCO3- can inhibit the removal efficiency of microcystin-LR. Furthermore, five intermediates products (m/z = 1029.5, 835.3, 829.3, 815.4, 642.1) were identified in this study, and the toxicity analysis of these degradation intermediates indicated that DBD treatment can reduce the toxicity of microcystin-LR. e-aq, •OH, H2O2, and O3 have been shown to play a major role in the degradation of microcystin-LR, and the contribution ranking of these active species is e-aq > â€¢OH > H2O2 > O3. The application of DBD plasma technology in microcystin-LR removal and detoxification has certain development potential.


Assuntos
Microcistinas , Água , Microcistinas/análise , Peróxido de Hidrogênio , Temperatura , Aquicultura
16.
Environ Pollut ; 347: 123789, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490526

RESUMO

The co-occurrence of cyanobacterial blooms and nano-microplastic pollution in the water is becoming an emerging risk. To assess the combined hepatotoxicity of microcystin-LR (MC-LR) and polystyrene microplastics (PSMPs) on zebrafish (Danio rerio), male adult zebrafish were exposed to single MC-LR (0, 1, 5, 25 µg/L) and a mixture of MC-LR and PSMPs (100 µg/L). After 60 d exposure, the results indicated that PSMPs significantly increased the MC-LR bioaccumulation in the livers in contrast to the single 25 µg/L MC-LR treatment group. Moreover, the severity of hepatic pathological lesions was aggravated in the MC-LR + PSMPs treatment groups, which were mainly characterized by cellular vacuolar degeneration, swollen hepatocytes, and pyknotic nucleus. The ultrastructural changes also proved that PSMPs combined with MC-LR could enhance the swollen mitochondria and dilated endoplasmic reticulum. The biochemical results, including increased malondialdehyde (MDA) and decreased glutathione (GSH), indicated that PSMPs intensified the MC-LR-induced oxidative damage in the combined treatment groups. Concurrently, alterations of sod1 and keap1a mRNA levels also confirmed that PSMPs together with MC-LR jointly lead to enhanced oxidative injury. Our findings demonstrated that PSMPs enhanced the MC-LR bioavailability by acting as a vector and exacerbating the hepatic injuries and antioxidant dysfunction in zebrafish.


Assuntos
Antioxidantes , Toxinas Marinhas , Poluentes Químicos da Água , Animais , Masculino , Peixe-Zebra , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Microcistinas/toxicidade , Poluentes Químicos da Água/toxicidade
17.
Mol Cell Endocrinol ; 586: 112203, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490633

RESUMO

Microcystin (MC) is most common cyanobacterial toxin. Few studies have evaluated the MC effects on the hypothalamic-pituitary-gonadal (HPG) axis and metabolic function. In this study, we assessed whether MC exposure results in HPG axis and metabolic changes. Female rats were exposed to a single dose of MC at environmentally relevant levels (5, 20 and 40 µg/kg). After 24 h, we evaluated reproductive and metabolic parameters for 15 days. MC reduced the hypothalamic GnRH protein expression, increased the pituitary protein expression of GnRHr and IL-6. MC reduced LH levels and increased FSH levels. MC reduced the primary follicles, increased the corpora lutea, elevated levels of anti-Müllerian hormone (AMH) and progesterone, and decreased estrogen levels. MC increased ovarian VEGFr, LHr, AMH, ED1, IL-6 and Gp91-phox protein expression. MC increased uterine area and reduced endometrial gland number. A blunted estrogen-negative feedback was observed in MC rats after ovariectomy, with no changes in LH levels compared to intact MC rats. Therefore, these data suggest that a MC leads to abnormal HPG axis function in female rats.


Assuntos
Eixo Hipotalâmico-Hipofisário-Gonadal , Microcistinas , Ratos , Feminino , Animais , Microcistinas/toxicidade , Interleucina-6/metabolismo , Ovário/metabolismo , Estrogênios , Hormônio Liberador de Gonadotropina/metabolismo
18.
Environ Sci Pollut Res Int ; 31(16): 24512-24524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443530

RESUMO

Cyanobacterial algal hepatotoxins, called microcystins (MCs), are a global health concern, necessitating research on effective removal methods from contaminated water bodies. In this study, we synthesized non-fluorine MIL-100(Fe) using an environmentally friendly room-temperature method and utilized it as an adsorbent to effectively remove microcystin-LR (MC-LR), which is the most toxic MC congener. MIL-100(Fe) was thoroughly characterized, and its adsorption process was investigated under various conditions. Results revealed rapid MC-LR adsorption, achieving 93% removal in just 5 min, with the pseudo-second-order kinetic model indicating chemisorption as the primary mechanism. The Langmuir isotherm model demonstrated a monolayer sorption capacity of 232.6 µg g-1 at room temperature, showing favorable adsorption. Furthermore, the adsorption capacity increased from 183 µg g-1 at 20 °C to 311 µg g-1 at 40 °C, indicating an endothermic process. Thermodynamic parameters supported MC-LR adsorption's spontaneous and feasible nature onto MIL-100(Fe). This study highlights MIL-100(Fe) as a promising method for effectively removing harmful biological pollutants, such as MC-LR, from contaminated water bodies in an environmentally friendly manner.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Água , Microcistinas/análise , Toxinas Marinhas , Adsorção , Poluentes Químicos da Água/análise , Purificação da Água/métodos
19.
Environ Sci Pollut Res Int ; 31(16): 24648-24661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448773

RESUMO

Cyanobacteria are known to produce diverse secondary metabolites that are toxic to aquatic ecosystems and human health. However, data about the cyanotoxins occurrence and cyanobacterial diversity in Pakistan's drinking water reservoirs is scarce. In this study, we first investigated the presence of microcystin, saxitoxin, and anatoxin in 12 water bodies using an enzyme-linked immunosorbent assay (ELISA). The observed cyanotoxin values for the risk quotient (RQ) determined by ELISA indicated a potential risk for aquatic life and human health. Based on this result, we made a more in-depth investigation with a subset of water bodies (served as major public water sources) to analyze the cyanotoxins dynamics and identify potential producers. We therefore quantified the distribution of 17 cyanotoxins, including 12 microcystin congeners using a high-performance liquid chromatography-high-resolution tandem mass spectrometry/mass spectrometry (HPLC-HRMS/MS). Our results revealed for the first time the co-occurrence of multiple cyanotoxins and the presence of cylindrospermopsin in an artificial reservoir (Rawal Lake) and a semi-saline lake (Kallar Kahar). We also quantified several microcystin congeners in a river (Panjnad) with MC-LR and MC-RR being the most prevalent and abundant. To identify potential cyanotoxin producers, the composition of the cyanobacterial community was characterized by shotgun metagenomics sequencing. Despite the noticeable presence of cyanotoxins, Cyanobacteria were not abundant. Synechococcus was the most abundant cyanobacterial genus found followed by a small amount of Anabaena, Cyanobium, Microcystis, and Dolichospermum. Moreover, when we looked at the cyanotoxins genes coverage, we never found a complete microcystin mcy operon. To our knowledge, this is the first snapshot sampling of water bodies in Pakistan. Our results would not only help to understand the geographical spread of cyanotoxin in Pakistan but would also help to improve cyanotoxin risk assessment strategies by screening a variety of cyanobacterial toxins and confirming that cyanotoxin quantification is not necessarily related to producer abundance.


Assuntos
Toxinas Bacterianas , Cianobactérias , Água Potável , Humanos , Microcistinas/metabolismo , Paquistão , Ecossistema , Toxinas Bacterianas/análise , Toxinas de Cianobactérias , Cianobactérias/metabolismo , Água Potável/análise , Lagos/análise
20.
Analyst ; 149(7): 2170-2179, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38445310

RESUMO

Due to the eutrophication of water bodies around the world, there is a drastic increase in harmful cyanobacterial blooms leading to contamination of water bodies with cyanotoxins. Chronic exposure to cyanotoxins such as microcystin leads to oxidative stress, inflammation, and liver damage, and potentially to liver cancer. We developed a novel and easy-to-use electrochemical impedance spectroscopy-based immunosensor by fabricating stencil-printed conductive carbon-based interdigitated microelectrodes and immobilising them with cysteamine-capped gold nanoparticles embedded in polyaniline. It has been also coupled with a custom handheld device enabling regular on-site assessment, especially in resource-constrained situations encountered in developing countries. The sensor is able to detect microcystin-LR up to 0.1 µg L-1, having a linear response between 0.1 and 100 µg L-1 in lake and river water and in serum and urine samples. In addition to being inexpensive, easy to fabricate, and sensitive, it also has very good selectivity.


Assuntos
Técnicas Biossensoriais , Líquidos Corporais , Toxinas Marinhas , Nanopartículas Metálicas , Microcistinas , Ouro/química , Imunoensaio , Lagos , Água/química , Líquidos Corporais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...